{"id":297,"date":"2019-08-16T17:42:09","date_gmt":"2019-08-16T09:42:09","guid":{"rendered":"https:\/\/www.bihec.com\/brimrose\/?p=297"},"modified":"2019-08-16T17:42:09","modified_gmt":"2019-08-16T09:42:09","slug":"brimrose-aotf-nir%e5%85%89%e8%b0%b1%e6%b3%95%e6%b5%8b%e5%ae%9a%e4%bd%8e%e5%af%86%e5%ba%a6%e8%81%9a%e4%b9%99%e7%83%af%e7%9a%84%e5%af%86%e5%ba%a6%e5%92%8c%e7%86%94%e8%9e%8d%e6%8c%87%e6%95%b0","status":"publish","type":"post","link":"https:\/\/www.bihec.com\/brimrose\/brimrose-aotf-nir%e5%85%89%e8%b0%b1%e6%b3%95%e6%b5%8b%e5%ae%9a%e4%bd%8e%e5%af%86%e5%ba%a6%e8%81%9a%e4%b9%99%e7%83%af%e7%9a%84%e5%af%86%e5%ba%a6%e5%92%8c%e7%86%94%e8%9e%8d%e6%8c%87%e6%95%b0\/","title":{"rendered":"Brimrose AOTF-NIR\u5149\u8c31\u6cd5\u6d4b\u5b9a\u4f4e\u5bc6\u5ea6\u805a\u4e59\u70ef\u7684\u5bc6\u5ea6\u548c\u7194\u878d\u6307\u6570"},"content":{"rendered":"
I. \u76ee\u7684<\/u><\/strong><\/p>\n \u672c\u6b21\u7814\u7a76\u7684\u76ee\u7684\u662f\u6d4b\u8bd5Brimrose<\/a> AOTF<\/a>-NOR\u5149\u8c31\u4f5c\u4e3a\u805a\u4e59\u70ef\u5bc6\u5ea6\u548c\u7194\u4f53\u6307\u6570\u6d4b\u91cf\u65b9\u6cd5\u7684\u53ef\u884c\u6027\uff0c\u8ba1\u7b97\u4e24\u4e2a\u7ec4\u5206\u7684\u9884\u6d4b\u6807\u51c6\u8bef\u5dee\uff08SEP\uff09,\u5e76\u8bc4\u4f30\u8fd9\u662f\u5426\u662f\u7528\u4e8e\u5728\u7ebf\u5206\u6790\u805a\u70ef\u70c3\u7684\u5316\u5b66\u548c\u7269\u7406\u7279\u6027\u7684\u65b9\u6cd5\u3002<\/p>\n II. \u7b80\u4ecb<\/u><\/strong><\/p>\n \u58f0\u5149\u53ef\u8c03<\/a>\u6ee4\u6ce2\u5668\uff08AOTF\uff09\u7684\u539f\u7406\u57fa\u4e8e\u5149\u5728\u5404\u5411\u5f02\u6027\u4ecb\u8d28\u4e2d\u7684\u58f0\u6298\u5c04\u3002\u88c5\u7f6e\u7531\u7c98\u5728\u53cc\u6298\u5c04\u6676\u4f53\u4e0a\u7684\u538b\u7535\u5bfc\u5c42\u6784\u6210\u3002\u5f53\u5bfc\u5c42\u88ab\u5e94\u7528<\/a>\u7684\u5c04\u9891\uff08RF\uff09\u4fe1\u53f7\u6fc0\u53d1\u65f6\uff0c\u5728\u6676\u4f53\u5185\u4ea7\u751f\u58f0\u6ce2\u3002\u4f20\u5bfc\u4e2d\u7684\u58f0\u6ce2\u4ea7\u751f\u6298\u5c04\u7387\u7684\u5468\u671f\u6027\u8c03\u5236\u3002\u8fd9\u63d0\u4f9b\u4e86\u4e00\u4e2a\u79fb\u52a8\u7684\u76f8\u6805\uff0c\u5728\u7279\u5b9a\u6761\u4ef6\u4e0b\u6298\u5c04\u5165\u5c04\u5149\u675f\u7684\u90e8\u5206\u3002\u5bf9\u4e8e\u4e00\u4e2a\u56fa\u5b9a\u7684\u58f0\u9891\uff0c\u5149\u9891\u7684\u4e00\u4e2a\u7a84\u5e26\u6ee1\u8db3\u76f8\u5339\u914d\u6761\u4ef6\uff0c\u88ab\u7d2f\u52a0\u6298\u5c04\u3002RF\u9891\u7387\u6539\u53d8\uff0c\u5149\u7684\u5e26\u901a\u4e2d\u5fc3\u76f8\u5e94\u6539\u53d8\u4ee5\u7ef4\u6301\u76f8\u5339\u914d\u6761\u4ef6\u3002<\/p>\n <\/p>\n \u5149\u8c31\u7684\u8fd1\u7ea2\u5916<\/a>\u8303\u56f4\u4ece800nm\u52302500 nm\u5ef6\u4f38\u3002\u5728\u8fd9\u4e2a\u533a\u57df\u6700\u7a81\u51fa\u7684\u5438\u6536\u8c31\u5e26\u5f52\u56e0\u4e8e\u4e2d\u7ea2\u5916\u533a\u57df\u7684\u57fa\u9891\u632f\u52a8\u7684\u6cdb\u9891\u548c\u5408\u9891\u3002\u662f\u57fa\u6001\u5230\u7b2c\u4e8c\u6fc0\u53d1\u6001\u6216\u7b2c\u4e09\u6fc0\u53d1\u6001\u7684\u80fd\u7ea7\u8dc3\u8fc1\u3002\u56e0\u4e3a\u8f83\u9ad8\u80fd\u7ea7\u8dc3\u8fc1\u8fde\u7eed\u4ea7\u751f\u7684\u6982\u7387\u8f83\u5c0f\uff0c\u6bcf\u4e2a\u6cdb\u9891\u7684\u5f3a\u5ea6\u8fde\u7eed\u51cf\u5f31\u3002\u7531\u4e8e\u8dc3\u8fc1\u7684\u7b2c\u4e8c\u6216\u7b2c\u4e09\u6fc0\u53d1\u6001\u6240\u9700\u7684\u80fd\u91cf\u8fd1\u4f3c\u4e8e\u7b2c\u4e00\u7ea7\u8dc3\u8fc1\u6240\u9700\u80fd\u91cf\u7684\u4e8c\u500d\u6216\u4e09\u500d\uff0c\u5438\u6536\u8c31\u5e26\u4ea7\u751f\u5728\u57fa\u9891\u6ce2\u957f\u7684\u4e00\u534a\u548c\u4e09\u5206\u4e4b\u4e00\u5904\u3002\u89e6\u7b80\u5355\u7684\u6cdb\u9891\u4ee5\u5916\uff0c\u4e5f\u4ea7\u751f\u5408\u9891\u3002\u8fd9\u4e9b\u901a\u5e38\u5305\u62ec\u5ef6\u4f38\u52a0\u4e0a\u4e00\u4e2a\u6216\u591a\u4e2a\u632f\u52a8\u65b9\u5f0f\u7684\u4f38\u7f29\u3002\u5927\u91cf\u4e0d\u540c\u5408\u9891\u662f\u53ef\u80fd\u7684\uff0c\u56e0\u800c\u8fd1\u7ea2\u5916\u533a\u57df\u590d\u6742\uff0c\u6709\u8bb8\u591a\u8c31\u5e26\u5f7c\u6b64\u90e8\u5206\u53e0\u52a0\u3002<\/p>\n \u73b0\u5728\uff0cNIR<\/a>S\u88ab\u7528\u4f5c\u5b9a\u91cf\u5de5\u5177\uff0c\u5b83\u4f9d\u8d56\u5316\u5b66\u8ba1\u91cf\u5b66\u6765\u53d1\u5c55\u6821\u6b63\u7ec4\u6210\u7684\u53c2\u7167\u5206\u6790\u548c\u8fd1\u7ea2\u5916\u5149\u8c31<\/a>\u7684\u5206\u6790\u7684\u5173\u8054\u3002\u8fd1\u7ea2\u5916\u6570\u636e\u7684\u6570\u5b66\u5904\u7406\u5305\u62ec\u591a\u5143\u7ebf\u6027\u56de\u5f52\u6cd5\uff08MLR\uff09\u3001\u4e3b\u6210\u5206\u5206\u6790\u6cd5<\/a>\uff08PCA\uff09\u3001\u4e3b\u6210\u5206\u56de\u5f52\u6cd5\uff08PCR\uff09\u3001\u504f\u6700\u5c0f\u4e8c\u4e58\u6cd5<\/a>\uff08PLS\uff09\u548c\u8bc6\u522b\u5206\u6790\u3002\u6240\u6709\u8fd9\u4e9b\u7b97\u6cd5\u53ef\u4ee5\u5355\u72ec\u6216\u8054\u5408\u4f7f\u7528\u6765\u5f97\u5230\u6709\u4ef7\u503c\u7ec4\u6210\u7684\u5b9a\u6027\u63cf\u8ff0\u548c\u5b9a\u91cf\u9884\u6d4b\u3002<\/p>\n <\/p>\n III.\u00a0 Methodology<\/u><\/strong><\/p>\n \u672c\u7814\u7a76\u4f7f\u7528\u4e86121\u4e2a\u5df2\u77e5\u7194\u4f53\u6307\u6570\u548c\u5bc6\u5ea6\u503c\u7684\u4f4e\u5bc6\u5ea6\u805a\u4e59\u70ef\u6837\u54c1\uff0c\u4f7f\u7528\u5e26\u65cb\u8f6c\u676f\u90e8\u4ef6\u7684Brimrose\u81ea\u7531\u7a7a\u95f4\u5149\u8c31\u4eea<\/a>\u6536\u96c6\u5149\u8c31\uff0c\u5bf9\u6837\u54c1\u8fdb\u884c\u65cb\u8f6c\uff0c\u4ee5\u5e73\u5747\u51fa\u6837\u54c1\u4e2d\u7684\u4e0d\u540c\u6548\u5e94\uff0c\u5982\u5747\u5300\u6027\u548c\u9897\u7c92\u5927\u5c0f\u5dee\u5f02\u3002\u57281100nm\u548c2300nm\u4e4b\u95f4\u91c7\u96c6\u5149\u8c31\uff0c\u5206\u8fa8\u7387\u4e3a2nm\uff0c\u6bcf\u4e2a\u6837\u54c1\u6536\u96c6\u4e86100\u6b21\u626b\u63cf\uff0c\u8fd9\u4e9b\u626b\u63cf\u88ab\u5e73\u5747\u6210\u4e00\u4e2a\u9891\u8c31\uff0c\u6bcf\u6b21\u8bfb\u53d6\u7684\u6570\u636e\u91c7\u96c6\u65f6\u95f4\u7ea6\u4e3a3\u79d2\u3002 \u8be5\u5149\u8c31\u4ee5\u5438\u6536\u5149\u8c31\u6a21\u5f0f\u6536\u96c6\uff0c\u7136\u540e\u5904\u7406\u6210\u4e3a\u7b2c\u4e00\u4e2a\u5bfc\u6570\uff0c\u7136\u540e\uff0c\u5c06\u7b2c\u4e00\u4e2a\u5bfc\u6570\u6570\u636e\u5bfc\u5165\u5316\u5b66\u8ba1\u91cf\u8f6f\u4ef6\u5305\u201dThe Unscrambler\u201d \u548cPLS1\u8fdb\u884c\u6570\u636e\u5206\u6790\u3002<\/p>\n IV.Results<\/p>\n <\/p>\n Figure 2.<\/strong>\u00a0 Absorbance spectra of some polyethylene samples.<\/p>\n <\/p>\n Figure 3.<\/strong>\u00a0 First derivative spectra of some polyethylene samples.<\/p>\n <\/p>\n This PLS 1 regression plot for density in the polyethylene samples shows excellent correlation between the measured and predicted values.\u00a0 The two distinct data sets in this plot are due to two different grades of material.\u00a0 Samples 048 and 060 are two transition samples.\u00a0 The data points create a good line of best fit and the correlation coefficient value of 0.985 is very high.\u00a0\u00a0 The SEP is equal to 0.54, which proves that the model from this regression will be able to accurately predict density in polyethylene from spectral data.\u00a0 The SEP is well within the standard deviation target value of 6%.<\/p>\n <\/p>\n Figure 5.<\/strong>\u00a0\u00a0 Regression coefficients for PLS 1 analysis of density in polyethylene samples.<\/p>\n The regression coefficients plot for the PLS 1 regression for density shows that most of the information for the regression comes from the wavelength regions from 1680nm to 1740nm.\u00a0 This area corresponds to the first overtone of the C-H stretch and is the region where one would expect to see spectral changes corresponding to changes in density.\u00a0 Density in polymers corresponds to changes in crystallization and this is what causes the changes in the spectral data.\u00a0 The fact that the first derivative data shows the greatest amount of change in the wavelength regions from 1680nm to 1740nm confirms that changes in density can be quantified using spectral data from these wavelength regions and a calibration model.<\/p>\n Because there was a wide range of values for melt index, it was decided to split the calibration for melt index into a low melt index calibration and a high melt index calibration.<\/p>\n The range of values for low melt index was from 0.7 to 2.0 and the range for low melt index was from 2.0 to 95.<\/p>\n <\/p>\n Figure 6.<\/strong>\u00a0 PLS 1 regression model for low melt index in polyethylene samples.\u00a0\u00a0 SEP is equal to 0.16 and the correlation coefficient is equal to 0.957.<\/p>\n <\/p>\n Figure 7.\u00a0 <\/strong>PLS 1 regression model for high melt index in polyethylene samples.\u00a0 SEP is equal to 3.14 and the correlation coefficient is equal to 0.978.<\/p>\n The results for these regressions show that it is quite feasible to measure melt index in polyethylene using spectral data.\u00a0\u00a0 There was a 6% target for relative error and both the high and low melt index regressions were well within this value.\u00a0 One high melt index sample had an extremely high value and was left out of the calculation as an outlier.<\/p>\n <\/p>\n Figure 8.\u00a0\u00a0 <\/strong>Regression coefficients for PLS 1 analysis of high melt flow index in polyethylene samples.<\/p>\n <\/p>\n As was the case with density, the regression coefficients indicate that most of the information for the high melt flow index regression comes from the 1680nm to 1740nm wavelength range, which is the first overtone of the C-H stretch.\u00a0 The small amount of noise in the regression coefficients indicates that there is no overfitting of the data.<\/p>\n <\/p>\n\n
2.\u00a0\u00a0\u00a0\u00a0\u00a0 <\/strong>Regressions and Modeling<\/strong><\/h4>\n
Figure 4.\u00a0 <\/strong>PLS 1 regression model for density in polyethylene samples.<\/h4>\n