UV-vis spectrophotometry on intact, active cells is notoriously difficult, due to the scatter of measurement light by cell suspensions. For decades, the first step in examining the chromophores of the ETC was to disrupt the cells and separate the contents. Today, research using a new integrating cavity spectrometer has demonstrated that isolated cell components do not act the same as when those components are in their native environment, for example, when they are not in the environment in which they were designed to function, they may behave differently.<\/p>\n
The data presented in this article includes spectra of the ETC in baker’s yeast as the cells dramatically alter in response to the removal of oxygen from their environment as the yeast metabolize endogenous substrates. Similar studies have been conducted using mammalian cells, bacteria, algae, and other intact, non-disrupted systems and can be seen elsewhere.<\/p>\n